Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e10958, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435017

RESUMEN

Urbanization is a leading cause of global biodiversity loss, yet cities can provide resources required by many species throughout the year. In recognition of this, cities around the world are adopting strategies to increase biodiversity. These efforts would benefit from a robust understanding of how natural and enhanced features in urbanized areas influence various taxa. We explored seasonal and spatial patterns in occupancy and taxonomic richness of birds and pollinators among office parks in Santa Clara County, California, USA, where natural features and commercial landscaping have generated variation in conditions across scales. We surveyed birds and insect pollinators, estimated multi-species occupancy and species richness, and found that spatial scale (local, neighborhood, and landscape scale), season, and urban sensitivity were all important for understanding how communities occupied sites. Features at the landscape (distance to streams or baylands) and local scale (tree canopy, shrub, or impervious cover) were the strongest predictors of avian occupancy in all seasons. Pollinator richness was influenced by local tree canopy and impervious cover in spring, and distance to baylands in early and late summer. We then predicted the relative contributions of different spatial scales to annual bird species richness by simulating "good" and "poor" quality sites based on influential covariates returned by the previous models. Shifting from poor to good quality conditions locally increased annual avian richness by up to 6.8 species with no predicted effect on the quality of the neighborhood. Conversely, sites of poor local and neighborhood scale quality in good-quality landscapes were predicted to harbor 11.5 more species than sites of good local- and neighborhood-scale quality in poor-quality landscapes. Finally, more urban-sensitive bird species were gained at good quality sites relative to urban tolerant species, suggesting that urban natural features at the local and landscape scales disproportionately benefited them.

2.
Sci Total Environ ; 647: 942-953, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180369

RESUMEN

Floodplains perform several important ecosystem services, including storing water during precipitation events and reducing peak flows, thus reducing flooding of downstream communities. Understanding the relationship between flood inundation and floodplains is critical for ecosystem and community health and well-being, as well as targeting floodplain and riparian restoration. Many communities in the United States, particularly those in rural areas, lack inundation maps due to the high cost of flood modeling. Only 60% of the conterminous United States has Flood Insurance Rate Maps (FIRMs) through the U.S. Federal Emergency Management Agency (FEMA). We developed a 30-meter resolution flood inundation map of the conterminous United States (CONUS) using random forest classification to fill the gaps in the FIRM. Input datasets included digital elevation model (DEM)-derived variables, flood-related soil characteristics, and land cover. The existing FIRM 100-year floodplains, called the Special Flood Hazard Area (SHFA), were used to train and test the random forests for fluvial and coastal flooding. Models were developed for each hydrologic unit code level four (HUC-4) watershed and each 30-meter pixel in the CONUS was classified as floodplain or non-floodplain. The most important variables were DEM-derivatives and flood-based soil characteristics. Models captured 79% of the SFHA in the CONUS. The overall F1 score, which balances precision and recall, was 0.78. Performance varied geographically, exceeding the CONUS scores in temperate and coastal watersheds but were less robust in the arid southwest. The models also consistently identified headwater floodplains not present in the SFHA, lowering performance measures but providing critical information missing in many low-order stream systems. The performance of the random forest models demonstrates the method's ability to successfully fill in the remaining unmapped floodplains in the CONUS, while using only publicly available data and open source software.

3.
Biol Conserv ; 224: 199-208, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30245526

RESUMEN

Non-native species pose one of the greatest threats to native biodiversity, and can have severe negative impacts in freshwater ecosystems. Identifying regions of spatial overlap between high freshwater biodiversity and high invasion pressure may thus better inform the prioritization of freshwater conservation efforts. We employ geospatial analysis of species distribution data to investigate the potential threat of non-native species to aquatic animal taxa across the continental United States. We mapped non-native aquatic plant and animal species richness and cumulative invasion pressure to estimate overall negative impact associated with species introductions. These distributions were compared to distributions of native aquatic animal taxa derived from the International Union for the Conservation of Nature (IUCN) database. To identify hotspots of native biodiversity we mapped total species richness, number of threatened and endangered species, and a community index of species rarity calculated at the watershed scale. An overall priority index allowed identification of watersheds experiencing high pressure from non-native species and also exhibiting high native biodiversity conservation value. While priority regions are roughly consistent with previously reported prioritization maps for the US, we also recognize novel priority areas characterized by moderate-to-high native diversity but extremely high invasion pressure. We further compared priority areas with existing conservation protections as well as projected future threats associated with land use change. Our findings suggest that many regions of elevated freshwater biodiversity value are compromised by high invasion pressure, and are poorly safeguarded by existing conservation mechanisms and are likely to experience significant additional stresses in the future.

4.
Aquat Invasions ; 13(3): 323-338, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31447950

RESUMEN

Understanding the spatial and temporal dynamics underlying the introduction and spread of nonindigenous aquatic species (NAS) can provide important insights into the historical drivers of biological invasions and aid in forecasting future patterns of nonindigenous species arrival and spread. Increasingly, public databases of species observation records are being used to quantify changes in NAS distributions across space and time, and are becoming an important resource for researchers, managers, and policy-makers. Here we use publicly available data to describe trends in NAS introduction and spread across the conterminous United States over more than two centuries of observation records. Available data on first records of NAS reveal significant shifts in dominance of particular introduction patterns over time, both in terms of recipient regions and likely sources. These spatiotemporal trends at the continental scale may be subject to biases associated with regional variation in sampling effort, reporting, and data curation. We therefore also examined two additional metrics, the number of individual records and the spatial coverage of those records, which are likely to be more closely associated with sampling effort. Our results suggest that broad-scale patterns may mask considerable variation across regions, time periods, and even entities contributing to NAS sampling. In some cases, observed temporal shifts in species discovery may be influenced by dramatic fluctuations in the number and spatial extent of individual observations, reflecting the possibility that shifts in sampling effort may obscure underlying rates of NAS introduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...